PhysicsIn5.com

(C1) Kinematics with Calculus Worksheet

1. The velocity of a bullet as it travels down the barrel of a rifle toward the opening is given by:

$$V(t) = (-5 \times 10^7 \text{ m/s}^3) t^2 + (3 \times 10^5 \text{ m/s}^2) t$$

- \dots where \mathbf{v} is in meters per second and \mathbf{t} is in seconds. The acceleration of the bullet just as it leaves the barrel is zero.
- a) Determine an expression for the position of the bullet as a function of time while the bullet is in the barrel.
- b) Determine an expression for the acceleration of the bullet as a function of time while the bullet is in the barrel.
- c) Determine the time interval over which the bullet is accelerated
- d) Find the velocity at which the bullet leaves the barrel
- e) Find the length of the barrel
- 2. A toy car has the velocity expression $\mathbf{v}(t) = (1 \text{ m/s}^3) \mathbf{t}^2 + 1 \text{ m/s}$. What will be the car's displacement from 0 s to 2 s?
- 3. A particle's acceleration in a straight line is modeled by the expression $\mathbf{a}(t) = (5\text{m/s}^3) \mathbf{t}$. At t = 2s its velocity is recorded as +17 m/s. What is the particle's velocity at a time of 4 seconds?
- 4. Turn the x(t) expression below into its corresponding v(t) and a(t) expressions.

$$\mathbf{x}(t) = \sin(2t) + \cos(t)$$