1. A compressed spring is placed between two carts that are initially at rest on a frictionless, horizontal surface. The spring is released, and the carts move away in opposite directions. Which of the following statements is true regarding this situation?
a. Mechanical energy is not conserved since the carts sped up and increased kinetic energy
b. Mechanical energy is not conserved because a spring was present.
c. Mechanical energy is conserved because the carts moved in opposite directions
d. Mechanical energy is conserved because only elastic and kinetic energies are present
2. A 0.5 kg lab cart moves along a frictionless, horizontal track with a velocity of $3 \mathrm{~m} / \mathrm{s}$ to the East. The cart collides elastically with an initially resting 1.0 kg lab cart. The two carts do not stick together, and the 0.5 kg cart is observed to continue East with a velocity of $1.0 \mathrm{~m} / \mathrm{s}$ after the collision. What is the magnitude of the velocity of the 0.75 kg cart after the collision?
3. A 0.5 kg lab cart moves along a frictionless, horizontal track with a velocity of $2 \mathrm{~m} / \mathrm{s}$. The cart collides with an initially resting 0.75 kg lab cart. The two carts stick together and move with a shared velocity of $0.8 \mathrm{~m} / \mathrm{s}$.
a. Was this an elastic or inelastic collision? How do you know?
b. Was there any energy dissipated in this collision? If yes, find the value.
